A Bayesian network classifier and hierarchical Gabor features for handwritten numeral recognition
نویسندگان
چکیده
We present a method of handwritten numeral recognition, where we introduce hierarchical Gabor features (HGFs) and construct a Bayesian network classifier that encodes the dependence between HGFs. We extract HGFs in such a way that they represent different levels of information which are structured such that the lower the level is, the more localized information they have. At each level, we choose an optimal set of 2-D Gabor filters in the sense that Fisher’s linear discriminant (FLD) measure is maximized and these Gabor filters are used to extract HGFs. We construct a Bayesian network classifier that encodes hierarchical dependence among HGFs. We confirm the useful behavior of our proposed method, comparing it with the naive Bayesian classifier, k-nearest neighbor, and an artificial neural network, in the task of handwritten numeral recognition.
منابع مشابه
Hierarchical Bayesian Network for Handwritten Digit Recognition
This paper introduces a hierarchical Gabor features(HGFs) and hierarchical bayesian network(HBN) for handwritten digit recognition. The HGFs represent a different level of information which is structured such that the higher the level, the more global information they represent, and the lower the level, the more localized information they represent. The HGFs are extracted by the Gabor filters s...
متن کاملPersian Handwritten Digit Recognition Using Particle Swarm Probabilistic Neural Network
Handwritten digit recognition can be categorized as a classification problem. Probabilistic Neural Network (PNN) is one of the most effective and useful classifiers, which works based on Bayesian rule. In this paper, in order to recognize Persian (Farsi) handwritten digit recognition, a combination of intelligent clustering method and PNN has been utilized. Hoda database, which includes 80000 P...
متن کاملRecognition of Handwritten Numerals Using a Combined Classifier with Hybrid Features
Off-line handwritten numeral recognition is a very difficult task. It is hard to achieve high recognition results using a single set of features and a single classifier, since handwritten numerals contain many pattern variations which mostly depend upon individual writing styles. In this paper, we propose a recognition system using hybrid features and a combined classifier. To improve recogniti...
متن کاملA Comparative Study on Efficiency of Classification Techniques with Zone Level Gabor Features towards Handwritten Telugu Character Recognition
Achieving high accuracies in recognition of handwritten text is a challenging research problem and never exhausting. The factors that instill challenges in handwritten character recognition include high degree of variability in writing, script type and the type of documents etc. In this paper, we focus on recognition of handwritten Telugu text commonly found in document images. The character se...
متن کاملIsolated Handwritten Roman Numerals Recognition Using Methods Based on Radon, Hough Transforms and Gabor Filter
This paper presents for isolated handwritten Roman numerals recognition a research interested for carrying out both comparisons between the performances in terms of precision and rapidity, the first comparison is realized between four hybrid methods used to extract the features from numerals that are the zoning combined with Radon transform in first time, then combined with Hough transform in s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition Letters
دوره 27 شماره
صفحات -
تاریخ انتشار 2006